

 Navigation

 	
 index

 	
 next |

 	MVSim 2.0 documentation

Welcome to MVSim’s documentation!

Contents:

	Overview

	The Logic Engine
	Events

	Display Logic and Simple Controller

	Future Directions

	The Configuration System
	Variables

	Design Contrast

	Future Directions

	The User Input Model

	The State Model
	Browsing and Editing States

	Future Directions

	The Events System
	Future Directions

	Course Sections
	Courseaffils

	Course Sections

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, CCNMTL.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MVSim 2.0 documentation

Overview

Aspects of MVSIM that should be considered in documentation:

	The Logic Engine, a pure Python module which
receives a Python object representing a game state and returns a
new game state.

	The Configuration system, which describes
the interface to and from the logic engine, by providing schema for
serializing and deserializing coefficient and variable values.

	The User Input model, which, like the
Configuration system, defines which variables may be edited
directly by the user during gameplay.

	The State model, which stores a single state of a
game in a JSON formatted text blob, and which is deserialized
according to a Configuration. The created timestamp of a state
expresses the time when a user played a game turn that resulted in
that state.

	The Game model, which contains a set of States (implicitly ordered
by their created timestamp) and a link to a single Configuration
and a single User Input, which determine how the Game will
interpret its States.

	The Events system, which determines which
notifications to display in the End Of Turn Report based on the
game state before and after a turn was executed. Events are
expressed as rows in a CSV file, and include information like:

	Under what conditions should this event occur?

	What text should be displayed to the user if this event occurs?

	What is the event’s severity?

The Events are currently read directly from the “events.csv” file
during runtime. It would probably make sense to move them to the
database and associate them with new games in the same way that
configurations are associated with games.

	Starting States, which are just States associated with a Course
Section. We need a UI for faculty to promote States to Starting
States.

	:doc`The Courseaffils integration and CourseSection model <course-sections>`.

	The Graphing Tool.

 Copyright 2011, CCNMTL.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MVSim 2.0 documentation

Contents

	The Logic Engine
	Events

	Display Logic and Simple Controller

	Future Directions
	Cleanup

	Pluggable Implementations

	Packaging

The Logic Engine

The logic engine is an effectively standalone, pure Python module that
determines the new state of an MVSim game by receiving a set of Python
objects that fully describe the game’s current state, and returning
back a new game state represented by a new set of Python variables and
a boolean flag that signals whether the game is now finished.

The set of Python objects that constitute the interface into the logic
engine is described by the configuration system. Currently, this consists of a list of variables
and a list of coefficients; conventionally (and only loosely enforced
in the code) the only difference is that variables will change value
from turn to turn, and coefficients will not.

The logic engine’s code lives in the engine subdirectory of the
Django project. The main entry point and only real API exposed by the
logic engine is engine.logic.Turn.go(); to see its usage look at
the main.views.submit_turn() view which invokes it.

Events

There is actually an additional requirement besides coefficients and
variables that must be provided to the logic engine: event
notifications. These are currently provided to the logic engine “out
of band” by reading a CSV file, but it’s worth being aware of. For
more see the events documentation.

Display Logic and Simple Controller

The functions in engine.display_logic are used by the views to
build the necessary context dictionary to be passed to the game’s
various templates (game view, season report, game over report, etc)

The code in this module was gradually extracted from TurboGears Kid
template files and moved into Python code. Feel free to refactor it
further to make it reasonably clean and/or simplify the templates to
not need so much of this stuff.

Similarly, the functions in engine.simple_controller were
extracted from various places in the original TurboGears project.
They are used in several places – engine logic code, Django view code
and template tags.

Future Directions

Cleanup

First of all, there are a couple of pretty straightforward
refactorings that would be worthwhile: the TwisterClient requirement
should probably be replaced with local use of Python’s stdlib random
module, and the events should probably live in the database and be
passed to the logic engine rather than being read from a file in the
source repository.

Pluggable Implementations

There may also be opportunities for broader refactoring of the code
within the logic engine. I’ve already built pretty well encapsulated
and self-documenting modules to represent fuel types
(engine.fuel) and disease types (engine.disease) and I
think other aspects of the simulation could similarly be encapsulated
in logical units.

This sort of refactoring seems to make it possible to build pluggable
systems within the simulation engine – writing a new fuel type or a
new kind of disease is now pretty straightforward, although a few
important details of UI presentation would need to be rearranged in
order to make them completely pluggable. In conjunction with a system
of multiple parallel configuration schemas
(since the absence or presence of each type of disease or fuel impacts
the set of required variables, coefficients, and events) this could be
used to let faculty turn on and off individual diseases or fuel
sources; or even to let faculty or students define their own diseases
or fuel sources and plug them into the system. I’m really interested
in pursuing this direction, and also in further refactoring the logic
engine to find other domains that could undergo this treatment
(village improvements and crop types come to mind)

Packaging

Related to the above point, I think it would make sense to actually
remove the logic engine module from the Django project; move its
required configuration data to live in that module; and ship the pair
as an independent Python package with, effectively, no dependencies
and no user interface. The Django project would then be
(approximately) a simulation platform with pluggable logic
implementations. Especially if users of the system were implementing
custom instances of common types (fuel, food, disease etc) this
decoupled packaging structure could make code-sharing easy and really
interesting.

It would also theoretically allow for other consumers of the logic
engine besides the Django platform, and entirely different logic
engines within the same Django platform, but those outcomes both seem
pretty far off and of no clear value.

 Copyright 2011, CCNMTL.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MVSim 2.0 documentation

Contents

	The Configuration System
	Variables

	Design Contrast

	Future Directions
	Object-Oriented Variables

	Equations Map

The Configuration System

The Configuration system allows administrators to build a schema by
defining a set of typed Variables, and then specifying which of those
Variables should be considered as “variables” (which change on each
turn) and as “coefficients” (which are stable throughout a game) in
the game. A Configuration serves two purposes:

	It defines and documents the necessary interface with the logic
engine. Executing a turn consists of submitting a set of
variables and coefficients, whose names and allowed types are
defined by a Configuration, to the logic engine; and receiving a
new set of variables and coefficients back from the logic engine,
representing the new state of the game.

	It defines the schema by which a game state (represented as a JSON
structure stored in a single text field) is validated and
deserialized to a Python object that can be sent to the logic
engine; and by which a Python object received from the logic
engine can be serialized back into a JSON structure to be stored
back in the database.

The Configuration system is implemented with Colander[1], a small
standalone library by Chris McDonough that is maintained as part of
the Pylons Project.

[1] https://docs.pylonsproject.org/projects/colander/dev/

Variables

The Configuration system has a notion of Variables (which are distinct
from the logic engine’s notion of “variables” vs “coefficients”; a
Variable can be used by the logic engine as either a variable or a
coefficient)

Variables are stored in the database (main_variable table) with a
name and a type (e.g. integer, boolean, or list) – both as text
columns. When constructing a Colander Schema out of a Configuration,
the Variables’ names and types are used to declare the elements of the
schema.

Variables can also store “extra type information” as a JSON blob,
which can be used to add additional information to the Colander
Schema. At the moment, the only “extra type information” implemented
are:

	“choices” (optional; should not be used for composite Variable
types): provide a list of values to restrict the Variable’s
possible values to

	“listof” (required for List Variables; unused otherwise): provide a
single string value that defines what kind of list this Variable
is. Values can be either a Variable Type (int, list, string, etc)
or the name of another Variable.

	“attributes” (required for Dict Variables; unused otherwise):
provide a list of string values, each the name of another Variable,
which this Variable contains.

Additional “extra type information” (e.g. ranges for numerical values)
could be implemented by modifying the mvsim.main.Variable.schema
method to interpret different parts of the field and modify the
colander constructors accordingly.

Design Contrast

The system is an update of the TurboGears MVSim’s system of Variables,
Coefficients, Configurations, and SavedStates. The major
differences are:

	A strict separation of schema and state. The previous incarnation
had a much looser boundary between the two: Variables and
Coefficients “schema” held default values which could be
overridden by particular (Coefficient) Configurations and
(Variable) SavedStates. Likewise, the previous incarnation
merged its concepts of schema and “starting state” – the place
where a set of variables and coefficients were given initial values
for new games(Configuration and SavedState) was the same place
where the set of required variables and coefficients for the logic
engine’s interface was implicitly declared.

	Merging Configuration and SavedState into a single “State” object
that includes both variables and coefficients.

	Collapsing the distinction between SavedStates (which were used to
initialize new games with variable values) and Turns (which were
used to define the variable values for a given game turn) into the
same single “State” object. The distinction between “starting
states” and “active game states” is only semi-formal; implicitly,
if a State is associated (by nullable foreign key) with a Game,
then it is considered the state for a turn of that Game; if its
game foreign key is null, it is a potential starting state. (For
more on starting states, see the “course sections” documentation.)

	Storing the entire State object in an unstructured fashion, in a
single text column, with its structure interpreted in Python code
based on an independent Configuration schema. The previous system,
by contrast, pushed data structure into the database, with separate
tables for Variables, Coefficients, sets of Variables in a Turn,
etc; and e.g. a separate row for each variable value in a given
turn. This structure didn’t really provide any advantages (we never
had to run any complex relational queries or aggregations on
variables and turns, with the possible exception of the graphing
tool) and made it overly difficult to manage incremental changes to
the logic engine’s interface.

By pushing structure out of the database and into Python code, and by
decoupling the definition of a structure from the data that fills it,
incremental changes should be easier to make and keep track
of. Similarly, by de-formalizing the distinction between variables and
coefficients, the logic engine can be more flexible – it can decide
what sort of interface it wants to provide, and no structural changes
to the database will be necessary. (For example, configurations of
“events” could be added; for details, see the “events” documentation.)

Future Directions

The design considers Configurations to be tightly coupled to the logic
engine, and loosely coupled to everything else. Any change to the
Configuration implies that the code of the logic engine has changed
(specifically, that it will be looking for more or fewer variables or
coefficients, or will be expecting a different type for the value of a
given variable or coefficient) and, while not every code change in the
logic engine requires a Configuration change, any code change that
modifies the logic engine’s interface expectations must be accompanied
by a Configuration change.

In light of this, it’s not clear to me whether Configurations should
actually be stored in the database: perhaps, instead, a Configuration
should be specified declaratively in Python code that lives alongside
the logic engine. (The decision to store Configurations in the
database was inherited from the previous incarnation of MVSim.) At the
moment, notice that the choice of Configuration is hard-coded to the
one whose ID=1.

The Configuration system, and the coupling of a Configuration to the
logic engine, with Game and State objects therefore more-or-less
agnostic to the data structure and logic engine that act upon them,
opens up the possibility of multiple logic engines existing in a
single MVSim installation. As long as each Game mediates between
Configuration and States, it could dispatch to one of several logic
engines. This could be used to provide:

	A/B testing of logic implementations

	Versioned logic engines with the ability to “roll-back” the default
engine to a previous version

	Beta-testing new logic engine versions

	Providing different logic implementations to different courses,
course sections, or institutions

Ultimately I’m imagining that the logic engine would be moved into a
separate pure-Python package, which ships with a logic engine and its
necessary Configuration schema; the MVSim Django application would
then be a simulation platform, and one or more logic-engine packages
could be installed and activated on top of it.

For more discussion of this see the “logic engine” documentation.

Object-Oriented Variables

The system of Configurations and Variables allows for composite
variables that contain other variables, as sketched above. I’ve
envisioned this being used to refactor and combine some of the
existing variables, both to simplify some of the logic engine’s code
and to reduce the headaches on instructors and admins creating and
editing starting states by providing logical groupings of conceptually
related variables in the editing UI. (The UI benefits would occur
automatically thanks to Deform’s schema-to-form logic.)

In particular, the assorted list-like variables related to family
members could be refactored into a dict-like Person variable with
logical attributes, and then aggregated in a list-like People variable
whose list entries must be Person items. These variables include:

	variables.names

	variables.genders

	variables.ages

	variables.health

	variables.education

	variables.sick

	variables.efforts

	variables.schooling_state

If these are combined into a Person variable, a bit of logic engine
code would need to change: specifically, the marshall_people and
setup_people functions could be removed entirely.

Other variables might also be good candidates for this sort of
refactoring; symptoms to look for include code that transforms
variables before passing them on to the meat of the logic engine (like
the simple_controller.adjust_submission function in the engine
module); variables with ad-hoc string formats that encode multiple
pieces of information in a single field (like sick, purchase_items
and sell_items) and variables which are rarely or never used in the
logic engine on their own, but instead need other variables to be
meaningful (like bednet_ages and owned_items.bednet, and maybe the
various microfinance_ variables)

Equations Map

Another future idea Rob and I have talked about is a way of browsing
through the variables and coefficients in a configuration, and,
ideally, seeing the equations that they’re used in – essentially,
converting the formulas in the PDF equations document to a set of
database entries with each component being a hyperlink to the variable
that it represents; and then a databrowse-style interface for
exploring the relationships. Note that if the configurations and
variables were converted to code this could be done just as easily in
code.

 Copyright 2011, CCNMTL.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MVSim 2.0 documentation

The User Input Model

The User Input model is like a “mini-configuration” that defines which
variables may be specified directly by the end user in a given turn.
This should be a strict subset of the variables in the active
Configuration; the Configuration’s variables that are not present in
the active User Input (as well as all coefficients) are not directly
changeable by the end user and are instead calculated within the logic
engine.

Mostly you should read about the configuration system which will tell about how configuration schemas are
defined and used.

The Colander deserialization of a user’s submission should automatically
invalidate user submissions that contain keys not present in the
active User Input.

Just as it does with Configurations, the view code is currently
hard-coded to look for the User Input with ID=1 in the database.

Note that the view code takes a game’s current state, merges in the
values provided from the form submission as deserialized through the
active User Input schema, and then sends that merged state in to the
logic engine for processing; the result of that processing is the only
thing that is subsequently reserialized and stored in the database.
(This is precisely the same approach that MVSim’s TurboGears
incarnation took.) In other words the user’s submission (or the
complete post-merge state) is never stored in the database as-is –
and, since the logic engine is free to recalculate new values for
variables that were directly entered by the user, the user’s
submission cannot reliably be reconstructed from the available data.

I’ve considered the idea of storing that post-merged-pre-processed
state as well, though there’s been no particular reason to do so; for
alternate implementations of the simulation platform, though, this could
become important – like gameplay with a staged set of decisions (e.g.
“first submit the family-level decisions, then submit the
village-level decisions”) or a multi-player simulation.

 Copyright 2011, CCNMTL.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MVSim 2.0 documentation

The State Model

The State model stores a single state of a game in a JSON formatted
text blob, which is deserialized according to a Configuration.

Most of the important things about the state model are straightforward
and/or covered in other documents (particularly the
configuration system and the logic engine)

Note that the created timestamp of a state expresses the time when a
user played a game turn that resulted in that state. This is actually
the only data used to construct the sequence of turns that make up a
Game’s history, and to determine the current turn of an active Game.

Browsing and Editing States

For faculty and staff, special Django views are available for viewing,
editing and cloning any given State. These views are intended to be
used for developing starting states for students to use when
initiating new games. (These are the named views “view_state” and
“clone_state” in the primary URLconf.)

The “view_state” view is used for both viewing and editing a state.
States associated with a game are not editable; but their data can be
browsed, and they can be cloned into a new State that is not
associated with any game and is therefore editable.

In these views, the forms displayed to the faculty user are
dynamically generated using Deform[1], a framework-agnostic library
standalone by Chris McDonough that is maintained as part of the Pylons
Project. Deform is also used to validate submitted data for edit
forms, and to display any error messages for invalid
submissions. Deform works by using Colander schemas, so it’s a natural
fit for States, which are associated with Colander schemas through the
Configuration system. For the most part it’s straightforward and the
code should be straightforward, but there were a few “gotchas” that
might not be obvious and are worth highlighting:

	Deform implicitly requires that every Colander SchemaNode in use
(recursively) must possess a name attribute – this is used to
build the HTML form inputs’ name attributes. The Colander and
Deform docs do mention this, but it’s not enforced in the code (it
would be hard to enforce without breaking the libraries’ proper
separation of concerns) and I missed it at first. If this
constraint isn’t met, data submitted through Deform will behave
badly, and data might get lost on save; for (a bit) more see
https://github.com/ccnmtl/mvsim/commit/8e28a07c6718b2aa8fce00002e483420fde846a1

	Deform has a “read-only form” feature, which will use a separate
set of templates to render a non-editable view on the data.[2]
However, as illustrated by the sample read-only form[3] provided
alongside the docs, this isn’t really usable out of the box; its
output isn’t pretty at all. So, for the State objects’ read-only
forms, I circumvented this feature altogether and instead used
standard read/write forms, but injected some Javascript into the
response to disable all the form fields. My relevant commits are
https://github.com/ccnmtl/mvsim/commit/b30807b3e488dd131b5367ca7e3f24748b96272c
and https://github.com/ccnmtl/mvsim/commit/60b9232d2bbdf6dd4ccfa90bdf36203ea1d84321

	Deform’s default templates are built with Chameleon ZPT. Yes, that
ZPT. Sorry.

	Deform template overrides can be dropped into the
deform_templates directory in the Django project – I customized
one template to make it a little prettier for our usage. To
override a form, just find the right one in the deform source
distribution, copy it to this directory, and edit.

	Deform treats HTML POST data as a stream, and thus requires that it
be available on the server in precisely the same order that it was
submitted from the client. This is a neat trick and actually a
valid assumption based on the relevant specifications. But Django
breaks this assumption – its HttpRequest.POST QueryDict is not
properly ordered. It’s necessary to work around this: see
https://github.com/ccnmtl/mvsim/commit/4f9c1bdb4fff30129b49b4834ba070074baaad03#L1R27

[1] https://docs.pylonsproject.org/projects/deform/dev/

[2] https://docs.pylonsproject.org/projects/deform/dev/basics.html

[3] http://deformdemo.repoze.org/readonly_sequence_of_mappings/

Future Directions

The State model’s main content is a JSON blob of all variables and
coefficients, stored in a text field, and interpreted through the
active configuration schema. This seems like it could be a natural fit
for a NoSQL database – on the other hand, it’s not clear whether the
added complexity there would worth it. The only area where I can
imagine any concrete gain is in the graphing tool, which has some
really horrible and inefficient code for aggregating and averaging
some variables into new graphable datasets; on the other hand, that
code could pretty trivially be made much cleaner and more efficient
without any database changes.

Relatedly, I was considering making States meaningfully versioned,
with the version-dimension representing turns played, and extending
the interface into the logic engine so that the engine would have
access to the entire game history – which would let us eliminate some
of the warts in the configuration like health_t1, health_t2 etc which
technically track current values of past state. However, this would
bring its own complications, since a single starting state would no
longer be sufficient to describe a new game – so I’m now leaning
against it.

 Copyright 2011, CCNMTL.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MVSim 2.0 documentation

The Events System

The Events system determines what notifications to display to the user
in the End Of Season Report, based on conditions expressed against the
game’s State prior to the turn being played and/or after the turn has
been played. For simple, hopefully self-documenting examples, see the
test cases at the bottom of the engine/event.py file.

Events include information like:

	Under what conditions should this event occur?

	What text should be displayed to the user if this event occurs?

	What is the event’s severity? (Well, actually, “css class”)

The actual Events in use are in a CSV file, events.csv, in the root
of the Django project; they are read from that file as needed at
runtime.

A Django setting, MVSIM_EVENTS_CSV, points to the location of this
file by default.

Future Directions

Pretty straightforward.

	The events should probably live in the database, not a CSV file
(which is an artifact of the Google Doc we were collaborating on to
specify the events to build ou)

	The events should be associated with the Configuration somehow, I
think, so that they can vary per game, and because they are
technically a required component of the interface to the logic
engine.

	The remaining notifications should be ported to the Events System:
some are still just hard-coded in the Season Report templates.

	Exposing UIs for faculty to browse, modify and select the active
events could be interesting.

 Copyright 2011, CCNMTL.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	MVSim 2.0 documentation

Course Sections

Courseaffils

MVSim uses the CCNMTL-developed Courseaffils[1] library to provide
course-based user groupings for the entire user experience. From the
user perspective, nearly all interactions with the application occur
within the context of a single course; if the user is associated with
more than one course in the system, he has to select which course to
work through before interacting with the application.

A COURSEAFFILS_COURSESTRING_MAPPER Django setting is used to
determine how logged-in users should be auto-associated with courses.
By default it is set to a Columbia-specific backend that integrates
with the WIND login system and Djangowind[2] auth backend.

The primary courseaffils model is courseaffils.Course. Courses
must be added to the system via the Django Admin UI before users can
be associated with courses. Course-student and course-faculty mappings
can be added directly through manual creation of auth.Groups
associated with the courses, or automatically by setting a Course’s
coursestring. (This automatic association feature is the bit that
relies on the COURSEAFFILS_COURSESTRING_MAPPER setting and which
defaults to a central-auth-based implementation specific to Columbia.)

On the backend, a user’s currently active Course object is available
as request.course which is set through a session key in the
courseaffils.middleware.CourseManagerMiddleware middleware.

(A lot of the above documentation should be moved to Courseaffils,
which currently lacks any high-level docs.)

[1] https://github.com/ccnmtl/django_courseaffils
[2] https://github.com/ccnmtl/djangowind

Course Sections

Beneath the primary Course containers, users are further
associated into Course Sections via the
mvsim.main.models.CourseSection model. Course Sections determine
only one thing: which Starting States are available
for a user to start a new game from.

This currently lacks any useful UI and has to be set via the Django
Admin UI.

Currently all students in a class are automatically stuffed into a
single “default” CourseSection. The CourseSection is created via a
post_save signal on courseaffils.Course in mvsim.main.models and
users are added to it in ad-hoc mvsim.main.views code. No Starting
State is auto-associated.

CourseSections could also impact views on the high score table, which
isn’t yet implemented anyway.

 Copyright 2011, CCNMTL.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	MVSim 2.0 documentation

Index

 Copyright 2011, CCNMTL.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/down.png

search.html

 Navigation

 		
 index

 		MVSim 2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, CCNMTL.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

